A Multiple Excited-State Engineering of Boron-Functionalized Diazapentacene Via a Tuning of the Molecular Orbital Coupling

Abstract
Harvesting high-energy excited-state energy is still challenging in organic chromophores. An introduction of boron atoms along the short axis of the diazapentacene backbone induces multiple emission characteristics. Our studies reveal that the weak molecular orbital (MO) coupling of the S3–S1 transition is responsible for the slow internal conversion rates. Such MO coupling-regulated anti-Kasha emission is different from the large band gap-induced anti-Kasha emission character of classical azulene derivatives. Theoretical studies reveal that a strong MO coupling of the S3–S0 transition is responsible for the higher photoluminescence quantum yield of the anti-Kasha emission in a more polar solution (tetrahydrofuran: 11%; cyclohexane: 0%). Such an MO coupling factor is generally overlooked in anti-Kasha emitters reported previously. Furthermore, the multiple emission can be regulated by solvent polarity, solvent temperature, and fluoride anion binding. As a proof of concept of harvesting high-energy emission, the multiple emission character has allowed us to design single-molecule white-light-emitting materials.
Funding Information
  • Natural Science Foundation of Shanghai (19ZR1433700)
  • ShanghaiTech University
  • Analytical Instrumentation Center, School of Physical Science and Technology, Shanghai Tech University (SPST-AIC10112914)