Integrated Electro-Optic Modulator in Z-Cut Lithium Niobate Thin Film With Vertical Structure

Abstract
We propose and demonstrate a Mach-Zehnder modulator in Z-cut lithium niobate thin film (LNTF) with a vertical electric field structure. By placing the metal electrodes on top and bottom of the waveguide rather than the usual lateral configuration, the electric field is fully overlapping the optical field. Such a configuration reduces the critical requirement of electrode alignment as needed in X/Y-cut LN based devices. Both the simulation and process details to realize the proposed device are demonstrated. The measured static performance accords well with the simulations. Additionally, we developed a new method to accurately characterize the dynamic performance of the Z-cut LNTF modulator, and the measured tuning efficiency is around 8.84 pm/V. Our proposed device validates the feasibility of integrated Z-cut LNTF based modulators, and will likely extend the research area of integrated lithium niobate photonics.
Funding Information
  • National Research Foundation’s Competitive Research Programme (NRF-CRP15-2015-01)
  • Quantum Engineering Programme (QEP-P2)