Superconductivity at 40 K in Lithiation-Processed [(Fe,Al)(OH)2][FeSe]1.2 with a Layered Structure

Abstract
Exploration of new superconductors has always been one of the research directions in condensed matter physics. We report here a new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2, which is synthesized by the hydrothermal ion-exchange technique. The structure is suggested by a combination of X-ray powder diffraction and the electron diffraction (ED). [(Fe,Al)(OH)2][FeSe]1.2 is composed of the alternating stacking of a tetragonal FeSe layer and a hexagonal (Fe,Al)(OH)2 layer. In [(Fe,Al)(OH)2][FeSe]1.2, there exists a mismatch between the FeSe sublayer and the (Fe,Al)(OH)2 sublayer, and the lattice of the layered heterostructure is quasi-commensurate. The as-synthesized [(Fe,Al)(OH)2][FeSe]1.2 is nonsuperconducting due to the Fe vacancies in the FeSe layer. The superconductivity with a Tc of 40 K can be achieved after a lithiation process, which is due to the elimination of the Fe vacancies in the FeSe layer. The Tc is nearly the same as that of (Li,Fe)OHFeSe although the structure of [(Fe,Al)(OH)2][FeSe]1.2 is quite different from that of (Li,Fe)OHFeSe. The new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2 contains an iron selenium tetragonal lattice interleaved with a hexagonal metal hydroxide lattice. These results indicate that the superconductivity is very robust for FeSe-based superconductors. It opens a path for exploring superconductivity in iron-base superconductors.
Funding Information
  • Ministry of Science and Technology of the People's Republic of China (2016YFA0300201, 2017YFA0303001, 2019YFA0704901)
  • Ministry of Industry and Information Technology of the People's Republic of China (TZ2016004)
  • National Natural Science Foundation of China (11534010, 11888101)
  • Chinese Academy of Sciences (QYZDYSSW-SLH021, XDB25000000)
  • Anhui Initiative in Quantum Information Technologies (AHY160000)