Protection Mechanisms of Periphytic Biofilm to Photocatalytic Nanoparticle Exposure

Abstract
Researchers are devoting great effort to combine photocatalytic nanoparticles (PNPs) with biological processes to create efficient environmental purification technologies (i.e., intimately coupled photobiocatalysis). However, little information is available to illuminate the responses of multispecies microbial aggregates against PNP exposure. Periphytic biofilm, as a model multispecies microbial aggregate, was exposed to three different PNPs (CdS, TiO2, and Fe2O3) under xenon lamp irradiation. There were no obvious toxic effects of PNP exposure on periphytic biofilm as biomass, chlorophyll content, and ATPase activity were not negatively impacted. Enhanced production of extracellular polymetric substances (EPS) is the most important protection mechanism of periphytic biofilm against PNPs exposure. Although PNP exposure produced extracellular superoxide radicals and caused intracellular reactive oxygen species (ROS) accumulation in periphytic biofilm, the interaction between EPS and PNPs could mitigate production of ROS while superoxide dismutase could alleviate biotic ROS accumulation in periphytic biofilm. The periphytic biofilms changed their community composition in the presence of PNPs by increasing the relative abundance of phototrophic and high nutrient metabolic microorganisms (families Chlamydomonadaceae, Cyanobacteriacea, Sphingobacteriales, and Xanthomonadaceae). This study provides insight into the protection mechanisms of microbial aggregates against simultaneous photogenerated and nanoparticle toxicity from PNPs.
Funding Information
  • University of Cincinnati
  • National Natural Science Foundation of China (31772396)
  • Henan Province (2016151)