Abstract
The article concernes a boundary value problem with linear boundary conditions of general form for the scalar differential equation f(t,x(t),x ̇(t))=y ̂(t), not resolved with respect to the derivative x ̇ of the required function. It is assumed that the function f satisfies the Caratheodory conditions, and the function y ̂ is measurable. The method proposed for studying such a boundary value problem is based on the results about operator equation with a mapping acting from a metric space to a set with distance (this distance satisfies only one axiom of a metric: it is equal to zero if and only if the elements coincide). In terms of the covering set of the function f(t,x_1,•): R→R and the Lipschitz set of the function f(t,•,x_2): R →R, conditions for the existence of solutions and their stability to perturbations of the function f generating the differential equation, as well as to perturbations of the right-hand sides of the boundary value problem: the function y ̂ and the value of the boundary condition, are obtained.