Abstract
As an important type of dynamic data-driven application system, unmanned aerial vehicles (UAVs) are widely used for civilian, commercial, and military applications across the globe. An increasing research effort has been devoted to trajectory prediction for non-cooperative UAVs to facilitate their collision avoidance and trajectory planning. Existing methods for UAV trajectory prediction typically suffer from two major drawbacks: inadequate uncertainty quantification of the impact of external factors (e.g., wind) and inability to perform online detection of abrupt flying pattern changes. This paper proposes a Gaussian process regression (GPR)-based trajectory prediction framework for UAVs featuring three novel components: 1) GPR with uniform confidence bounds for simultaneous predictive uncertainty quantification, 2) online trajectory change-point detection, and 3) adaptive training data pruning. The paper also demonstrates the superiority of the proposed framework to competing trajectory prediction methods via numerical studies using both simulation and real-world datasets.
Funding Information
  • Division of Information and Intelligent Systems (1849300)
  • Division of Civil, Mechanical and Manufacturing Innovation (1846663)

This publication has 27 references indexed in Scilit: