New Search

Export article

Efficient and Robust Online Trajectory Prediction for Non-Cooperative Unmanned Aerial Vehicles

Guangrui Xie,

Abstract: As an important type of dynamic data-driven application system, unmanned aerial vehicles (UAVs) are widely used for civilian, commercial, and military applications across the globe. An increasing research effort has been devoted to trajectory prediction for non-cooperative UAVs to facilitate their collision avoidance and trajectory planning. Existing methods for UAV trajectory prediction typically suffer from two major drawbacks: inadequate uncertainty quantification of the impact of external factors (e.g., wind) and inability to perform online detection of abrupt flying pattern changes. This paper proposes a Gaussian process regression (GPR)-based trajectory prediction framework for UAVs featuring three novel components: 1) GPR with uniform confidence bounds for simultaneous predictive uncertainty quantification, 2) online trajectory change-point detection, and 3) adaptive training data pruning. The paper also demonstrates the superiority of the proposed framework to competing trajectory prediction methods via numerical studies using both simulation and real-world datasets.
Keywords: trajectory prediction / Online Trajectory / Unmanned / GPR / Aerial / adaptive / UAVs / Cooperative

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Aerospace Information Systems" .
References (23)
    Back to Top Top