Wide-Angle Broadband Rasorber for Switchable and Conformal Application

Abstract
A novel wide-angle and broadband rasorber is presented incorporating several advances. To broaden the bandwidth, we introduce a new type of frequency selective surface (FSS) in the bottom layer of the rasorber. This strategy increases the upper and lower absorption bandwidths while reducing the insertion loss at transmission window. Furthermore, a new top resistive layer is proposed via the loading of electric field coupled resonator elements on a cross-dipole structure. The proposed design offers both, an angularly stable performance and a thin structure that can be fabricated on a single dielectric substrate. To enable switchability, p-i-n diodes are employed and a reconfigurable rasorber/absorber is designed where a new concept of “lossy/lossless” top layer is investigated and established as the best choice among other switchable designs. Equivalent circuit models are constructed for both active and passive designs to provide physical insight into their operation. Finally, to enable deployment of the rasorber over curved geometries, these advances are incorporated into a conformal structure. Three separate prototypes are fabricated and good agreement is obtained between design predictions and experimental results.
Funding Information
  • Visvesvaraya Young Faculty Research Award, Ministry of Electronics and Information Technology, Government of India