Potential Correlations between Unexplained Experimental Observables and Hot Projectile-Like Fragments in Primary Interactions above ECM/u ≈ 150 MeV

Abstract
An enhanced neutron production and an enhanced nuclear destruction due to secondary fragments have been observed in very thick targets irradiated with high energy ions. This enhancement is beyond theoretical calculations and it is an unresolved problem. It is observed only when primary ion interactions exceed an energy threshold (ECM/u ≈ 150 MeV). Investigations using nuclear emulsions for very high-energy nuclear reactions suggest that two distinctly different classes of relativistic projectile-like fragments are emitted in primary interactions: a “cool” channel with a temperature of (T(p)cool ≈ 10 MeV), and a “hot” channel with (T(p)hot ≈ 40 MeV. This second reaction class may induce the above mentioned enhanced reactions of secondary fragments, thus being responsible for unresolved problems. This assumption should be studied in further experiments. Nuclear interactions of secondary particles in thick targets are of interest, in particular in view of radiation protection needs for high energy and high intensity heavy ion accelerators. Many basic ideas of this paper go back to the late Professor E. Schopper (Frankfurt).

This publication has 1 reference indexed in Scilit: