New Search

Export article
Open Access

Gaussian Volterra processes with power-type kernels. Part I

Published: 27 April 2022
 by  VTeX

Abstract: The stochastic process of the form \[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\] is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.
Keywords: int / beta / alpha / 0.1667em / variances / 0.2778em / stochastic / Volterra / kernels / 0.2222em

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Modern Stochastics: Theory and Applications" .
References (5)
    Cited by 1 articles
      Back to Top Top