An optimal control strategy and Grünwald-Letnikov finite-difference numerical scheme for the fractional-order COVID-19 model

Abstract
In this article, a mathematical model of the COVID-19 pandemic with control parameters is introduced. The main objective of this study is to determine the most effective model for predicting the transmission dynamic of COVID-19 using a deterministic model with control variables. For this purpose, we introduce three control variables to reduce the number of infected and asymptomatic or undiagnosed populations in the considered model. Existence and necessary optimal conditions are also established. The Grünwald-Letnikov non-standard weighted average finite difference method (GL-NWAFDM) is developed for solving the proposed optimal control system. Further, we prove the stability of the considered numerical method. Graphical representations and analysis are presented to verify the theoretical results.