On a Mechanism for the Formation of Spatially Inhomogeneous Structures of Light Waves in Optical Information Transmission Systems

Abstract
Spatially inhomogeneous structures of light waves are used as a mechanism of compacting information in optical and fiber-optic communication systems. In this paper, we consider a mathematical model of an optical radiation generator with a nonlinear delayed feedback loop and a stretching (compression) operator of the spatial coordinates of the light wave in a plane orthogonal to the radiation direction. It is shown that the presence of a delay in the feedback loop can lead to the generation of stable periodic spatially inhomogeneous oscillations. In the space of the main parameters of the generator, the spaces of generation of stable spatially non-uniform oscillations are constructed, the mechanism of their occurrence is studied, and approximate asymptotic formulas are constructed.