Oral Vaccination with Engineered Probiotic Limosilactobacillus reuteri Has Protective Effects against Localized and Systemic Staphylococcus aureus Infection

Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection.
Funding Information
  • Science and Technology Major Project of Inner Mongolia Autonomous Region of China (2021ZD0013)
  • Key Scientific and Technological Research Program of Inner Mongolia Autonomous Region (2021GG0156)
  • National Natural Science Foundation of China (32060800)

This publication has 69 references indexed in Scilit: