New Search

Export article

Other versions available

Jordan in The Church of The Higher Hilbert Space: Entanglement and Thermal Fluctuations

Vlatko Vedral
Published: 20 March 2022
 by  Quanta
 in Quanta

Abstract: I revisit Jordan's derivation of Einstein's formula for energy fluctuations in the black body in thermal equilibrium. This formula is usually taken to represent the unification of the wave and the particle aspects of the electromagnetic field since the fluctuations can be shown to be the sum of wave-like and particle-like contributions. However, in Jordan's treatment there is no mention of the Planck distribution and all averages are performed with respect to pure number states of radiation (mixed states had not yet been discovered!). The chief reason why Jordan does reproduce Einstein's result despite not using thermal states of radiation is that he focuses on fluctuations in a small (compared to the whole) volume of the black body. The state of radiation in a small volume is highly entangled to the rest of the black body which leads to the correct fluctuations even though the overall state might, in fact, be assumed to be pure (i.e. at zero temperature). I present a simple derivation of the fluctuations formula as an instance of mixed states being reductions of higher level pure states, a representation that is affectionately known as "Church of the Higher Hilbert Space". According to this view of mixed states, temperature is nothing but the amount of entanglement between the system and its environment.Quanta 2022; 11: 1–4.
Keywords: fluctuations / formula / mixed states / black body / wave / Hilbert / Church / treatment / thermal / entangled
Other Versions

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Quanta" .
Back to Top Top