New Search

Export article

Polarized Electroluminescence Emission in High‐Performance Quantum Rod Light‐Emitting Diodes via the Langmuir‐Blodgett Technique

Seunghyun Rhee, Dongju Jung, Dahin Kim, Doh C. Lee, Changhee Lee,
Published: 9 July 2021
 in Small

Abstract: Due to their anisotropic structure, quantum rods (QRs) feature unique properties that differ from quantum dots, such as suppression of non-radiative Auger recombination and linearly polarized light emission. Despite many potential advantages, the progress of QR-based light-emitting diodes (QR-LEDs) is left behind due to the difficulty in aligning QRs. In this study, polarized electroluminescence emission is reported in high-performance QR-LEDs by employing the Langmuir-Blodgett (LB) technique. The adoption of the LB technique successfully produces a highly dense and smooth QR film with a high degree of alignment. As a result, the aligned QR films exhibit polarized photoluminescence emission with a degree of linear polarization of 2.1. Advantageous features of the LB technique, such as nondestructiveness, precise thickness control, and the nonnecessity of an additional matrix material, allow to fabricate QR-LEDs with the same procedure as the standard spin coating-based scheme. The device is fabricated via the LB technique, which shows excellent device performance, such as the low turn-on voltage of 1.8 V, peak luminance of 56 287 cd m−2, and peak external quantum efficiency (EQE) of 10.33%. Furthermore, these devices clearly exhibit an indication of polarized electroluminescence emission, which opens new opportunities for QRs in display technologies.
Keywords: Langmuir-Blodgett / polarized electroluminescence emission / quantum rod alignment / quantum rod light-emitting diodes / quantum rods

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Small" .
References (46)
    Back to Top Top