Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features

Abstract
Surfactant-modified clay minerals are known for their good sorption properties of both organic and inorganic compounds from aqueous solutions. However, the current knowledge regarding the effect of both cationic and nonionic surfactants on the properties of bentonite is still insufficient. Bentonite, with montmorillonite as the base clay, was modified with hexadecethyltrimethylammonium bromide (a cationic surfactant) in the amount of 1.0 cation exchange capacity (CEC) of bentonite and varying concentrations of t-octylphenoxypolyethoxyethanol (Triton X-100, a nonionic surfactant). We aimed to improve the understanding of the effect of nonionic and cationic surfactants on clay minerals. The modified bentonites were characterized by X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TG/DTA), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (SEM) and specific surface area and pore volume (BET). According to our results, the presence of a cationic surfactant significantly increased the amount of the adsorbed nonionic surfactant. Moreover, an increase in the concentration of nonionic surfactants is also associated with an increase in the effectiveness of the modification process. Our results indicate that the amount of nonionic surfactant used has a significant effect on the properties of the obtained hybrid material. Modification of bentonite with a nonionic surfactant did not cause an expansion of the interlayer space of smectite, regardless of the presence of a cationic surfactant. The modification process was found to significantly decrease the specific surface area of bentonite. Improvement of hydrophobic properties and thermal stability was also observed.