Ergonomics Design and Assistance Strategy of A-Suit

Abstract
Concerning the biomechanics and energy consumption of the lower limbs, a soft exoskeleton for the powered plantar flexion of the ankle, named A-Suit, was developed to improve walking endurance in the lower limbs and reduce metabolic consumption. The method of ergonomics design was used based on the biological structures of the lower limbs. A profile of auxiliary forces was constructed according to the biological force of the Achilles tendon, and an iterative learning control was applied to shadow this auxiliary profile by iteratively modifying the traction displacements of drive units. During the evaluation of the performance experiments, four subjects wore the A-Suit and walked on a treadmill at different speeds and over different inclines. Average heart rate was taken as the evaluation index of metabolic consumption. When subjects walked at a moderate speed of 1.25 m/s, the average heart rate Hav under the Power-ON condition was 7.25 ± 1.32% (mean ± SEM) and 14.40 ± 2.63% less than the condition of No-suit and Power-OFF. Meanwhile, the additional mass of A-Suit led to a maximum Hav increase of 7.83 ± 1.44%. The overall reduction in Hav with Power-ON over the different inclines was 6.93 ± 1.84% and 13.4 ± 1.93% compared with that of the No-Suit and Power-OFF condition. This analysis offers interesting insights into the viability of using this technology for human augmentation and assistance for medical and other purposes.
Funding Information
  • National Natural Science Foundation of Beijing (No. 3202003, No. 2018YFB1307004)