A Frequency-Correcting Method for a Vortex Flow Sensor Signal Based on a Central Tendency

Abstract
A vortex flow meter employs a sensor based on the piezoelectric vibration principle to realize vortex signal acquisition, and therefore the measurement results are susceptible to vibration noise. In this paper, the generalized mode method is proposed based on the central tendency characteristic of the vortex signal and combined with the existing filter bank method. The method combining filter bank with the generalized mode is designed and applied in the signal-processing system of the vortex flow meter, which makes up for the defect that the filter bank method cannot filter out the noise in the sub-band. The simulation experiments verify the feasibility and anti-interference performance of the algorithm. Meanwhile, a comparison with two FFT (Fast Fourier Transform) spectrum analysis methods shows that the algorithm designed in this paper requires a smaller sample size and achieves better real-time performance. The actual anti-vibration experiment and calibration experiment verify that the signal-processing system of a vortex flow meter ensures good accuracy and repeatability.
Funding Information
  • National Natural Science Foundation of China-Guangdong Joint Fund (61703263)