New Search

Export article

Multiple-Aircraft-Conflict Resolution Under Uncertainties

Peng Zhao, Heinz Erzberger, Yongming Liu

Abstract: A new method for efficient trajectory planning to resolve potential conflicts among multiple aircraft is proposed. A brief review of aircraft trajectory planning and conflict resolution methods is given first. Next, a new method is proposed that is based on a probabilistic conflict risk map using the predicted probability of conflict with the intention information of the intruders. The risk-map-based method allows the path planning algorithm to simultaneously account for many uncertainties affecting safety, such as positioning error, wind variability, and human errors. Following this, A* algorithm is used to find the cost-minimized trajectory for a single aircraft by considering all other aircraft as intruders. Search heuristic method is implemented to iterate the A* algorithm for all aircraft to optimize the trajectory planning. Convergence and computation efficiency of the proposed method are investigated in detail. Numerical examples are used to illustrate the effectiveness of the proposed method under several important scenarios for air traffic control, such as wind effects, non-cooperative aircraft, minimum disturbance of pilots, and deconflict with flight intent information. Several conclusions are drawn based on the proposed method.
Keywords: aircraft / conflict / trajectory / resolution / planning / optimize / safety / intruders / wind / Uncertainties

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Guidance, Control, and Dynamics" .
References (35)
    Back to Top Top