New Search

Export article

Deep learning-based signal-independent assessment of macular avascular area on 6×6 mm optical coherence tomography angiogram in diabetic retinopathy: a comparison to instrument-embedded software

Honglian Xiong, , Yukun Guo, Jie Wang, Bingjie Wang, Liqin Gao, Christina J Flaxel, , Thomas S Hwang,
Published: 13 September 2021
 by  BMJ

Abstract: Synopsis A deep-learning-based macular extrafoveal avascular area (EAA) on a 6×6 mm optical coherence tomography (OCT) angiogram is less dependent on the signal strength and shadow artefacts, providing better diagnostic accuracy for diabetic retinopathy (DR) severity than the commercial software measured extrafoveal vessel density (EVD). Aims To compare a deep-learning-based EAA to commercial output EVD in the diagnostic accuracy of determining DR severity levels from 6×6 mm OCT angiography (OCTA) scans. Methods The 6×6 mm macular OCTA scans were acquired on one eye of each participant with a spectral-domain OCTA system. After excluding the central 1 mm diameter circle, the EAA on superficial vascular complex was measured with a deep-learning-based algorithm, and the EVD was obtained with commercial software. Results The study included 34 healthy controls and 118 diabetic patients. EAA and EVD were highly correlated with DR severity (ρ=0.812 and −0.577, respectively, both p<0.001) and visual acuity (r=−0.357 and 0.420, respectively, both p<0.001). EAA had a significantly (p<0.001) higher correlation with DR severity than EVD. With the specificity at 95%, the sensitivities of EAA for differentiating diabetes mellitus (DM), DR and severe DR from control were 80.5%, 92.0% and 100.0%, respectively, significantly higher than those of EVD 11.9% (p=0.001), 13.6% (p<0.001) and 15.8% (p<0.001), respectively. EVD was significantly correlated with signal strength index (SSI) (r=0.607, p<0.001) and shadow area (r=−0.530, p<0.001), but EAA was not (r=−0.044, p=0.805 and r=−0.046, p=0.796, respectively). Adjustment of EVD with SSI and shadow area lowered sensitivities for detection of DM, DR and severe DR. Conclusion Macular EAA on 6×6 mm OCTA measured with a deep learning-based algorithm is less dependent on the signal strength and shadow artefacts, and provides better diagnostic accuracy for DR severity than EVD measured with the instrument-embedded software.
Keywords: retina / imaging

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "British Journal of Ophthalmology" .
Back to Top Top