Mathematical modeling of unmanned movement aircraft - four-rotor

Abstract
The article presents an analytical approach to building a mathematical model of a quadrocopter. The main purpose of building the model was to design an appropriate facility control system and analyze its behavior in various situations. The assumption was made to build a model, control system and all accompanying algorithms in an open programming environment, which will allow their subsequent implementation in a real facility, without the need to use expensive software. The quadrocopter is controlled by the operator by means of hand movements that are read by the camera and properly interpreted using advanced image processing methods. The entire system is visualized and embedded in a three-dimensional simulation environment. The model study was conducted using a DC motor as an input data source. The operation of the model was checked with a controller when a disturbance was introduced into the model. The four-rotor model with a selected regulator was tested by analyzing the angular velocity and position of the object in a rectangular coordinate system. At the end of the article, the results of the simulations made are presented and the resulting conclusions are presented.