New Search

Advanced search
Export article
Open Access

body2vec: 3D Point Cloud Reconstruction for Precise Anthropometry with Handheld Devices

Sciprofile linkMagda Jiménez, Sciprofile linkPablo Navarro, Sciprofile linkBruno Pazos, Sciprofile linkLeonardo Morales, Sciprofile linkVirginia Ramallo, Sciprofile linkCarolina Paschetta, Sciprofile linkSoledad De Azevedo, Sciprofile linkAnahí Ruderman, Sciprofile linkLuis O. Perez, Sciprofile linkClaudio A. Delrieux, Sciprofile linkRolando Gonzalez-José
Published: 11 September 2020
 by  MDPI
Journal of Imaging , Volume 6; doi:10.3390/jimaging6090094

Abstract: Current point cloud extraction methods based on photogrammetry generate large amounts of spurious detections that hamper useful 3D mesh reconstructions or, even worse, the possibility of adequate measurements. Moreover, noise removal methods for point clouds are complex, slow and incapable to cope with semantic noise. In this work, we present body2vec, a model-based body segmentation tool that uses a specifically trained Neural Network architecture. Body2vec is capable to perform human body point cloud reconstruction from videos taken on hand-held devices (smartphones or tablets), achieving high quality anthropometric measurements. The main contribution of the proposed workflow is to perform a background removal step, thus avoiding the spurious points generation that is usual in photogrammetric reconstruction. A group of 60 persons were taped with a smartphone, and the corresponding point clouds were obtained automatically with standard photogrammetric methods. We used as a 3D silver standard the clean meshes obtained at the same time with LiDAR sensors post-processed and noise-filtered by expert anthropological biologists. Finally, we used as gold standard anthropometric measurements of the waist and hip of the same people, taken by expert anthropometrists. Applying our method to the raw videos significantly enhanced the quality of the results of the point cloud as compared with the LiDAR-based mesh, and of the anthropometric measurements as compared with the actual hip and waist perimeter measured by the anthropometrists. In both contexts, the resulting quality of body2vec is equivalent to the LiDAR reconstruction.
Keywords: structure from motion / neural networks / anthropometry / Deep Learning / 3D point cloud

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Imaging" .
References (21)
    Back to Top Top