Exact analysis of MHD Walters’-B fluid flow with non-singular fractional derivatives of Caputo-Fabrizio in the presence of radiation and chemical reaction

Abstract
The present article reports the applications of Caputo-Fabrizio time-fractional derivatives. This article generalizes the idea of unsteady MHD free convective flow in a Walters.-B fluid with heat and mass transfer study over an exponential isothermal vertical plate embedded in a porous medium. The governing equations are converted into dimensionless form and extended to fractional model. The generalized Walters-B fluid model has been solved analytically using the Laplace transform technique. From the general solutions we reduce limiting solutions when to the similar motion for Newtonian fluid. The corresponding expressions for and Nusselt and Sherwood numbers are also assessed. Numerical results for velocity, temperature and concentration are demonstrated graphically for various factors of interest and discussed. As a result, we have plotted the influence of fractional parameter on fluid flow and drawn comparison between fractional Walters’-B and fractional Newtonian fluid and found that fractional Newtonian fluid is faster than fractional Walters’-B fluids.