Role of NMDA Receptors and Protein Synthesis in the Conditioned Aversion Learning in Young Chicks

Abstract
The brain mechanisms underlying conditioned aversion learning in birds were studied using experimental model in young chicks. The learning consisted of a conditioning stimulus presentation followed by a delayed sickness-inducing treatment reinforcement. Intraventricular administration of an NMDA receptor antagonist MK-801, a protein synthesis inhibitor anisomycin, or an inhibitor of glycoprotein fucosylation 2-deoxygalactose just before presentation of the conditioning stimulus prevented aversion learning. Injections of the same chemicals before reinforcement did not affect learning. The obtained results show that the investigated mechanisms underlying aversion learning were critical at the early stage of memory formation. Later processes of association of the conditioning stimulus with the reinforcement appear to be independent of the NMDA receptors and protein synthesis/glycosylation, or alternatively to be located in other brain areas.