Intraseasonal Variability of Upper-Ocean Heat Fluxes in the Central Bay of Bengal

Abstract
Upper-ocean heat content and heat fluxes of 10-60-day intraseasonal oscillations (ISOs) were examined using high-resolution currents and hydrographic fields measured at five deep-water moorings in the central Bay of Bengal (BoB) and satellite observations as part of an international effort examining the role of the ocean on monsoon intraseasonal oscillations (MISOs) in the BoB. Currents, temperature and salinity were sampled over the upper 600 to 1200 m from July 2018 -June 2019. The 10-60-day velocity ISOs of magnitudes 20-30 cm s−1 were observed in the upper 200 m, and temperature ISOs as large as 3°C were observed in the thermocline near 100 m. The wavelet co-spectral analysis reveals multiple periods of ISOs carrying heat southward. The meridional heat-flux divergence associated with the 10-60-day band was strongest in the central BoB at depths between 40 and 100 m, where the averaged flux divergence over the observational period is as large as 10−7 ° C s−1. The vertically-integrated heat-flux-divergence in the upper 200 m is about 20-30 Wm−2, which is comparable to the annual-average net surface heat flux in the northern BoB. Correlations between the heat content over the 26° C isotherm and the outgoing longwave radiation indicate that the atmospheric forcing typically leads changes of the oceanic-heat content, but in some instances, during fall-winter months, oceanic-heat content leads the atmospheric convection. Our analyses suggest that ISOs play an important role in the upper-ocean heat balance by transporting heat southward, while aiding the air-sea coupling at ISO time scales. Upper-ocean heat content and heat fluxes of 10-60-day intraseasonal oscillations (ISOs) were examined using high-resolution currents and hydrographic fields measured at five deep-water moorings in the central Bay of Bengal (BoB) and satellite observations as part of an international effort examining the role of the ocean on monsoon intraseasonal oscillations (MISOs) in the BoB. Currents, temperature and salinity were sampled over the upper 600 to 1200 m from July 2018 -June 2019. The 10-60-day velocity ISOs of magnitudes 20-30 cm s−1 were observed in the upper 200 m, and temperature ISOs as large as 3°C were observed in the thermocline near 100 m. The wavelet co-spectral analysis reveals multiple periods of ISOs carrying heat southward. The meridional heat-flux divergence associated with the 10-60-day band was strongest in the central BoB at depths between 40 and 100 m, where the averaged flux divergence over the observational period is as large as 10−7 ° C s−1. The vertically-integrated heat-flux-divergence in the upper 200 m is about 20-30 Wm−2, which is comparable to the annual-average net surface heat flux in the northern BoB. Correlations between the heat content over the 26° C isotherm and the outgoing longwave radiation indicate that the atmospheric forcing typically leads changes of the oceanic-heat content, but in some instances, during fall-winter months, oceanic-heat content leads the atmospheric convection. Our analyses suggest that ISOs play an important role in the upper-ocean heat balance by transporting heat southward, while aiding the air-sea coupling at ISO time scales.
Funding Information
  • Office of Naval Research (N0001420WX00410)
  • Office of Naval Research (N0001420WX01886)
  • Office of Naval Research (N00014-17-1-2334)