New Search

Export article
Open Access

Chemical constituents and theira-glucosidase inhibitory activity of the stem of Salacia chinensis L.

Huu Tho Le, Truc Thanh Thi Duong, Phu Hoang Dang, Truong Nhat Van Do, Hai Xuan Nguyen, Mai Thanh Thi Nguyen, Nhan Trung Nguyen

Abstract: Salacia chinensis L., known as “Chop mao” in Vietnam, is a climbing shrub that belongs to the Celastraceae family. The stem of S. chinensis L. is used as a traditional medicine for the treatment of diabetes, rheumatoid arthritis, back pain, … The dried powdered stem of S. chinensis L. was collected in Phu Yen province and was extracted with methanol to yield methanol extract. The methanol extract was suspended in H2O and partitioned successively with n-hexane, CHCl3, EtOAc to obtain n-hexane, CHCl3, EtOAc, and H2O fractions, respectively. The CHCl3 fraction was subjected to a series of chromatographic separation to afford four purified compounds including 3-oxolup-20(29)-en-30-al (1), betulin-3-caffeate (2), 2-(4-hydroxy-3,5-dimethoxylphenyl)ethanol (3), and acetosyringone (4). Their structures were elucidated on the basis of the spectroscopic analysis and comparison with literature data. The isolated compounds were tested for their α-glucosidase inhibitory activity. The result indicated that all compounds (1-4) possessed significant α-glucosidase at the testing concentration of 100 µM with the percent inhibition values of 9.5 ± 1.3, 70.89 ± 0.25, 44.2 ± 1.6, and 6.7 ± 1.7 %, respectively. In addition, betulin-3-caffeate (2) and 2-(4-hydroxy-3,5-dimethoxylphenyl)ethanol (3) show more potent α-glucosidase inhibitory activity, with IC50 values of 69.7 and 152.0 µM, respectively, than that of positive control acarbose (IC50 = 214.5 µM).
Keywords: chinensis / diabetes / glucosidase inhibitory / inhibitory activity / α glucosidase / methanol extract / CHCl3

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Back to Top Top