Molecular dynamics investigations of the size effects on mechanical properties and deformation mechanism of amorphous and monocrystalline composite AlFeNiCrCu high-entropy alloy nanowires

Abstract
The atomic models of amorphous and monocrystalline composite AlFeNiCrCu high-entropy alloy nanowires were established via the molecular dynamics method. The effects of amorphous structure thickness on mechanical properties and deformation mechanism were investigated by applying tensile and compressive loads to the nanowires. As the thickness of amorphous structures increases, the tensile yield strength decreases, and the asymmetry between tension and compression decreases. The tensile deformation mechanism transforms from the coupling interactions between stacking faults in crystal structures and uniform deformation of amorphous structures to the individual actions of uniform deformation of amorphous structures. During the tensile process, the nanowires necking appears at amorphous structures, and the thinner amorphous structures, the more prone to necking. The compressive deformation mechanism is the synergistic effects of twins and SFs in crystal structures and uniform deformation of amorphous structures, which is irrelevant to amorphous structure thickness. Remarkably, amorphous structures transform into crystal structures in the amorphous and monocrystalline composite nanowires during the compressive process.