The Effects of Glycerophospholipid Nanomicelles on the Cryotolerance of Frozen–Thawed Rooster Sperm

Abstract
Semen banking is an efficient method of artificial insemination for commercial breeders. However, the cryopreservation process induces severe damages to plasma membranes, which lead to reduced fertility potential of thawed sperm. The replacement of membrane lipids with oxidized membrane lipids repairs the cell membrane and improves its stability. The aim of this study was to investigate the effects of glycerophospholipid (GPL) nanomicelles on the cryosurvival of thawed rooster semen. Semen samples were collected from six 29-week Ross broiler breeder roosters, then mixed and divided into five equal parts. The samples were diluted with the Beltsville extender containing different concentrations of GPL according to the following groups: 0 (GPL-0), 0.1% (GPL-0.1), 0.5% (GPL-0.5), 1% (GPL-1), and 1.5% (GPL-1.5), then diluted semen was gradually cooled to 4°C during 3 hours and stored in liquid nitrogen. The optimum concentration of GPL was determined based on the quality parameters of thawed sperm. Our results showed sperm exposed to GPL-1 had significantly increased motion parameters and mitochondrial activity. The percentages of viability and membrane integrity were significantly higher in the GPL-1, and GPL-1.5 groups compared with the other groups (p < 0.05). Moreover, the lowest rate of apoptosis and lipid peroxidation were observed in the GPL-1 and GPL-1.5 groups in comparison with the frozen control group. Our findings indicated that membrane lipid replacement with GPL nanomicelles (1% and 1.5%) could substitute for damaged lipids in membranes and protect sperm cells against cryoinjury.